Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Med Chem ; 240: 114596, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1982959

ABSTRACT

Boceprevir is an HCV NSP3 inhibitor that was explored as a repurposed drug for COVID-19. It inhibits the SARS-CoV-2 main protease (MPro) and contains an α-ketoamide warhead, a P1 ß-cyclobutylalanyl moiety, a P2 dimethylcyclopropylproline, a P3 tert-butylglycine, and a P4 N-terminal tert-butylcarbamide. By introducing modifications at all four positions, we synthesized 20 boceprevir-based MPro inhibitors including PF-07321332 and characterized their MPro inhibition potency in test tubes (in vitro) and 293T cells (in cellulo). Crystal structures of MPro bound with 10 inhibitors and cytotoxicity and antiviral potency of 4 inhibitors were characterized as well. Replacing the P1 site with a ß-(S-2-oxopyrrolidin-3-yl)-alanyl (Opal) residue and the warhead with an aldehyde leads to high in vitro potency. The original moieties at P2, P3 and the P4 N-terminal cap positions in boceprevir are better than other tested chemical moieties for high in vitro potency. In crystal structures, all inhibitors form a covalent adduct with the MPro active site cysteine. The P1 Opal residue, P2 dimethylcyclopropylproline and P4 N-terminal tert-butylcarbamide make strong hydrophobic interactions with MPro, explaining high in vitro potency of inhibitors that contain these moieties. A unique observation was made with an inhibitor that contains a P4 N-terminal isovaleramide. In its MPro complex structure, the P4 N-terminal isovaleramide is tucked deep in a small pocket of MPro that originally recognizes a P4 alanine side chain in a substrate. Although all inhibitors show high in vitro potency, they have drastically different in cellulo potency to inhibit ectopically expressed MPro in human 293T cells. In general, inhibitors with a P4 N-terminal carbamide or amide have low in cellulo potency. This trend is reversed when the P4 N-terminal cap is changed to a carbamate. The installation of a P3 O-tert-butyl-threonine improves in cellulo potency. Three molecules that contain a P4 N-terminal carbamate were advanced to cytotoxicity tests on 293T cells and antiviral potency tests on three SARS-CoV-2 variants. They all have relatively low cytotoxicity and high antiviral potency with EC50 values around 1 µM. A control compound with a nitrile warhead and a P4 N-terminal amide has undetectable antiviral potency. Based on all observations, we conclude that a P4 N-terminal carbamate in a boceprevir derivative is key for high antiviral potency against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Carbutamide , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Carbamates , Humans , Lactams , Leucine , Nitriles , Proline/analogs & derivatives , Protease Inhibitors/chemistry , SARS-CoV-2
2.
Eur J Med Chem ; 240: 114570, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1906974

ABSTRACT

As an essential enzyme of SARS-CoV-2, the COVID-19 pathogen, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 positions and the N-terminal protection group, we synthesized 18 tripeptidyl MPro inhibitors that contained also an aldehyde warhead and ß-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 position. Systematic characterizations of these inhibitors were conducted, including their in vitro enzymatic inhibition potency, X-ray crystal structures of their complexes with MPro, their inhibition of MPro transiently expressed in 293T cells, and cellular toxicity and SARS-CoV-2 antiviral potency of selected inhibitors. These inhibitors have a large variation of determined in vitro enzymatic inhibition IC50 values that range from 4.8 to 650 nM. The determined in vitro enzymatic inhibition IC50 values reveal that relatively small side chains at both P2 and P3 positions are favorable for achieving high in vitro MPro inhibition potency, the P3 position is tolerable toward unnatural amino acids with two alkyl substituents on the α-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MPro bound with 16 inhibitors were determined. In all structures, the MPro active site cysteine interacts covalently with the aldehyde warhead of the bound inhibitor to form a hemithioacetal that takes an S configuration. For all inhibitors, election density around the N-terminal protection group is weak indicating possible flexible binding of this group to MPro. In MPro, large structural variations were observed on residues N142 and Q189. Unlike their high in vitro enzymatic inhibition potency, most inhibitors showed low potency to inhibit MPro that was transiently expressed in 293T cells. Inhibitors that showed high potency to inhibit MPro transiently expressed in 293T cells all contain O-tert-butyl-threonine at the P3 position. These inhibitors also exhibited relatively low cytotoxicity and high antiviral potency. Overall, our current and previous studies indicate that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for tripeptidyl aldehyde inhibitors of MPro.


Subject(s)
COVID-19 , SARS-CoV-2 , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Protease Inhibitors/chemistry , Threonine
3.
Curr Res Chem Biol ; 2: 100025, 2022.
Article in English | MEDLINE | ID: covidwho-1800124

ABSTRACT

The rapid spread of COVID-19 has caused a worldwide public health crisis. For prompt and effective development of antivirals for SARS-CoV-2, the pathogen of COVID-19, drug repurposing has been broadly conducted by targeting the main protease (MPro), a key enzyme responsible for the replication of virus inside the host. In this study, we evaluate the inhibition potency of a nitrothiazole-containing drug, halicin, and reveal its reaction and interaction mechanism with MPro. The in vitro potency test shows that halicin inhibits the activity of MPro an IC50 of 181.7 â€‹nM. Native mass spectrometry and X-ray crystallography studies clearly indicate that the nitrothiazole fragment of halicin covalently binds to the catalytic cysteine C145 of MPro. Interaction and conformational changes inside the active site of MPro suggest a favorable nucleophilic aromatic substitution reaction mechanism between MPro C145 and halicin, explaining the high inhibition potency of halicin towards MPro.

4.
ACS Cent Sci ; 8(2): 192-204, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1788264

ABSTRACT

As an essential enzyme of SARS-CoV-2, main protease (MPro) triggers acute toxicity to its human cell host, an effect that can be alleviated by an MPro inhibitor. Using this toxicity alleviation, we developed an effective method that allows a bulk analysis of the cellular potency of MPro inhibitors. This novel assay is advantageous over an antiviral assay in providing precise cellular MPro inhibition information to assess an MPro inhibitor. We used this assay to analyze 30 known MPro inhibitors. Contrary to their strong antiviral effects and up to 10 µM, 11a, calpain inhibitor II, calpain XII, ebselen, bepridil, chloroquine, and hydroxychloroquine showed relatively weak to undetectable cellular MPro inhibition potency implicating their roles in interfering with key steps other than just the MPro catalysis in the SARS-CoV-2 life cycle. Our results also revealed that MPI5, MPI6, MPI7, and MPI8 have high cellular and antiviral potency. As the one with the highest cellular and antiviral potency among all tested compounds, MPI8 has a remarkable cellular MPro inhibition IC50 value of 31 nM that matches closely to its strong antiviral effect with an EC50 value of 30 nM. Therefore, we cautiously suggest exploring MPI8 further for COVID-19 preclinical tests.

5.
ACS central science ; 2022.
Article in English | EuropePMC | ID: covidwho-1688464

ABSTRACT

As an essential enzyme of SARS-CoV-2, main protease (MPro) triggers acute toxicity to its human cell host, an effect that can be alleviated by an MPro inhibitor. Using this toxicity alleviation, we developed an effective method that allows a bulk analysis of the cellular potency of MPro inhibitors. This novel assay is advantageous over an antiviral assay in providing precise cellular MPro inhibition information to assess an MPro inhibitor. We used this assay to analyze 30 known MPro inhibitors. Contrary to their strong antiviral effects and up to 10 μM, 11a, calpain inhibitor II, calpain XII, ebselen, bepridil, chloroquine, and hydroxychloroquine showed relatively weak to undetectable cellular MPro inhibition potency implicating their roles in interfering with key steps other than just the MPro catalysis in the SARS-CoV-2 life cycle. Our results also revealed that MPI5, MPI6, MPI7, and MPI8 have high cellular and antiviral potency. As the one with the highest cellular and antiviral potency among all tested compounds, MPI8 has a remarkable cellular MPro inhibition IC50 value of 31 nM that matches closely to its strong antiviral effect with an EC50 value of 30 nM. Therefore, we cautiously suggest exploring MPI8 further for COVID-19 preclinical tests. A cell sorting-based assay was developed to study about 30 SARS-CoV-2 main protease inhibitors, revealing MPI8 as the most potent one and others with likely different mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL